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Separated Component-Based Restoration of
Speckled SAR Images

Vishal M. Patel,Member, IEEE,Glenn R. Easley, Rama Chellappa,Fellow, IEEEand Nasser M.
Nasrabadi,Fellow, IEEE.

Abstract—Many coherent imaging modalities such as Synthetic
Aperture Radar (SAR) suffer from a multiplicative noise com-
monly referred to as speckle which often makes the interpretation
of data difficult. An effective strategy for speckle reduction is
to use a dictionary that can sparsely represent the featuresin
the speckled image. However, such approaches fail to capture
important salient features such as texture. In this paper, we
present a speckle reduction algorithm that handles this issue
by formulating the restoration problem so that the structure and
texture components can be separately estimated with different
dictionaries. To solve this formulation an iterative algorithm
based on surrogate functionals is proposed. Experiments indicate
the proposed method performs favorably compared to state-of-
the-art speckle reduction methods.

Index Terms—Synthetic Aperture Radar, speckle, multiplica-
tive noise, image restoration.

I. I NTRODUCTION

Coherent imaging systems such as SAR, holography, ultra-
sound, and synthetic aperture sonar suffer from a multiplicative
noise known as speckle [1]. Speckle appears when objects
illuminated by coherent radiation have surface features that
are rough compared with the illuminating wavelength. It is
caused by the constructive and destructive interference of
the coherent returns scattered by many elementary reflectors
within the resolution cell. Speckle can make the detection
and interpretation difficult for automated as well as human
observers. In some cases, it maybe important to remove
speckle to improve applications such as compression, target
recognition and segmentation.

Many algorithms have been developed to suppress speckle
noise [2], [3], [4], [5], [6], [7]. One of the simplest approaches
for speckle noise reduction is known as multi-look processing.
It involves non-coherently summing the independent images
formed fromL independent pieces of the phase history. The
averaging process reduces the noise variance by a factor of
L. However, this often results in the reduction of the spatial
resolution. Other types of speckle reduction methods are based
on spatial local filtering performed after the formation of the
SAR image. Various filters have been developed that avoid the
loss in spatial resolution [2], [8], [9], [10], [11]. Some ofthese
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methods are based on a window processing of the noisy image.
Consequently, their performance depends significantly on the
type, direction and the size of the filter used. Furthermore,
some of these filters often fail to preserve sharp features such
as edges.

To overcome some of these limitations, wavelet-based meth-
ods are often utilized [12], [13], [14], [15], [16], [17] in which
noise shrinkage is applied to the detail wavelet coefficients of
the noisy image [18],[19]. Since speckle is multiplicativein
nature, some of these methods often apply logarithm transform
to SAR images to convert the multiplicative noise into additive
noise. After applying soft or hard thersholding to the wavelet
coefficients of the logarithmically transformed image, an ex-
ponential operation is employed to convert the logarithmically
transformed image back to the original multiplicative format.

It is well known that shrinkage-based denoising algorithms
rely on the sparsity of the representation. A fixed transform
such as a wavelet transform can represent a piecewise smooth
image sparsely but it may also fail to represent an image
with textures sparsely. As a result, the overall denoising
performance of a fixed transform on an image containing both
piecewise smooth and texture components can be inadequate.

Another popular approach for restoring speckled images
involves total variation (TV) regularization [20] where the
underlying reflectivity image is assumed to be piecewise
smooth [21], [22], [23]. It has been shown that TV regular-
ization often yields images with the stair-casing effect [24].
As a result the estimated image usually contains constant
regions and fine details such as textures are often removed.
To deal with some of these effects, a hybrid method that
uses coefficient thresholding and TV regularization on the
logarithm of the magnitude image or the log-image domain
was recently proposed in [25]. In particular, hard-thresholding
on the curvelet coefficients of the log-image is first applied.
Then a variational method that uses anℓ1 fidelity to the
thresholded coefficients and a TV regularization in the log-
image domain is applied.

Several methods have been proposed that use a combined
dictionary approach to image restoration. Suppose that we are
givenM different dictionariesDm, m = 1, ...,M , then one
can obtainM different estimates ofx by applying either hard
or soft threshold to the coefficients from each corresponding
dictionary. Let x̂i be the resulting estimate from theith
dictionary. Then, a simple estimator ofx is given by averaging
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M individual estimates

x̂ =
1

M

M
∑

i=1

x̂i.

This is essentially the idea behind translation-invariantwavelet
denoising by cycle spinning [26], where the final estimate
is obtained by averaging the estimates from the thresholded
orthogonal wavelet coefficients of translated versions of the
original image. This method has been applied for speckle
reduction in SAR imagery [12]. This simple method suffers
from some issues in practice as it weights equally both
good and bad quality estimates. To deal with this problem,
a Bayesian framework to optimally combine the individual
estimators was proposed in [27]. This method weights each
estimatex̂i at each sample according to the significance that
the elements in the dictionaryDi have in synthesizinĝxi at
the same sample. This method is effective, however, it can be
very time consuming. A similar approach was also proposed
in [28].

A novel cartoon and texture image component-based
restoration for SAR images was proposed in [29]. Specifically,
a SAR image, considered as a functionf , is to be decomposed
into a sum of two componentsf = u+ v, whereu represents
the cartoon or geometric (i.e. piecewise smooth) components
of f , andv represents the oscillatory or textured components.
The second component essentially accounts for noise and the
texture elements. In the proposed technique,u is estimated
and is considered as the restored (despeckled) image while the
textured components ofv are not attempted to be recovered.
This is problematic since discarding the texture components
may result in the loss of important salient features in a SAR
image. Figure 1 provides an example of how an image sep-
arates into the structural and textured components indicating
the importance of retaining these textural elements.

Motivated by recent advances in sparse representation-
based image separation [30], we propose a similar separation-
based despeckling method so that the image is decomposed
into a sum of piecewise smooth and textured elements. Our
formulation is based on finding sparse representations of these
elements from dictionaries specifically suited to compress
them and differs significantly by not just treating the texture
and noise components as complements of the cartoon-based
estimated image. By taking advantage of the ability of sparse
representations in our scheme to estimate, we are able to retain
important salient and textured features in the final estimated
image.

A. Organization of the paper

Section II reviews the statistical models for SAR images.
In Section III, we present the component separation algorithm
based on surrogate functionals. In Section IV, we show some
of the results on both real and simulated data, and present the
concluding remarks in Section V.

II. STATISTICAL MODELS FORSAR IMAGES

Let Y ∈ R
N×N be the observed image intensity,X ∈

R
N×N be the noise free image, andF ∈ R

N×N be the speckle

(a) (b)

(c) (d)

Fig. 1. Image separation. (a) Original image. (b) Structural components.
(c) Textural components. (d) Structural + Textural components. Note that the
textural components in (c) contains some important features.

noise. Assuming the SAR image represents an average ofL
looks,Y is related toX by the following multiplicative model
[31]

Y = FX, (1)

where F is the normalized fading speckle noise random
variable. It follows a Gamma distribution with unit mean and
variance 1

L and has the following pdf

p(F ) =
1

Γ(L)
LLFL−1e−LF , (2)

F ≥ 0, L ≥ 1 whereΓ(.) denotes the gamma function.
The natural logarithmic transformation converts the multi-

plicative noise model (1) into an additive model

Ỹ = ln(Y ) = ln(F ) + ln(X)

= F̃ + X̃, (3)

where F̃ = ln(F ) and X̃ = ln(X). The pdf of the random
variableF̃ is given by [32], [31]

p(F̃ ) =
1

Γ(L)
LLeF̃Le−LeF̃

. (4)

The mean ofF̃ is given by

E[F̃ ] = ψ(0, L) − ln(L)

and variance is given by

var(F̃ ) = ψ(1, L),

where

ψ(k, t) =

(

d

dt

)k+1

ln Γ(t)
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is known as thekth polygamma function.
Note that there exist many statistical models for SAR

images [33], some based on mathematical approaches and
others based on physical approaches. In this paper, we use
the logarithmic transform to convert the multiplicative noise
to an additive noise and take into account the appropriate
distribution model to handle the noise.

III. I MAGE COMPONENT ESTIMATION

Let y, f , andx be lexicographically ordered vectors of size
N2 representing̃Y , F̃ , and X̃, respectively. We assume that
the SAR reflectivity field is a superposition of two different
signals

x = xp + xt, (5)

wherexp is the piecewise smooth component ofx andxt is
the texture component ofx. So the additive model (3) can be
written as

y = x + f

= xp + xt + f . (6)

We further assume thatxp is compressible in a dictionary
represented in a matrix form asDp, and similarly, xt is
compressible in a dictionary represented in a matrix form as
Dt. Given Mp,Mt ≥ N2, the dictionaryDp ∈ R

N2×Mp

andDt ∈ R
N2×Mt are chosen such that they provide sparse

representations of piecewise smooth and texture contents,
respectively. That is, we assume there are coefficient vectors
αp ∈ R

Mp×1 and αt ∈ R
Mt×1 so thatxp = Dpαp and

xt = Dtαt. The compressibility assumption means that when
the coefficients are ordered in magnitude, they decay rapidly.
The texture dictionaryDt needs to contain atoms that are
oscillatory in nature such as those found in the discrete
cosine/sine transform and the Gabor transform. The dictionary
Dp should be able to process images with geometric features
such as edges. The matrixDp could represent some type of
wavelet, shearlet, curvelet, or contourlet dictionary.

One can recover the SAR reflectivity fieldx by estimating
the componentsxp and xt via αp and αt by solving the
following variational problem:

α̂p, α̂t = arg min
αp,αt

λ‖αp‖1 + λ‖αt‖1 + γTV (Dpαp)

+
1

2
‖y − Dpαp − Dtαt‖2

2, (7)

where TV is the total variation (i.e. sum of the absolute
variations in the image) and for anN -dimensional vectorx,
‖.‖q denotes theℓq-norm,0 < q <∞, defined as

‖x‖q =

(

N
∑

i=1

|xi|q
)

1

q

.

The two components are the corresponding representations
of the two parts and can be obtained byx̂p = Dpα̂p and
x̂t = Dtα̂t. This notion of separating a signal into different
morphologies using sparse representations is often known as
Morphological Component Analysis (MCA) [30].

Instead of seeking the sparse sets of coefficientsαp andαt

directly and then inverting the representations, it is possible

to directly seek the images whose transform coefficients or
dictionary representations are sparse. This corresponds to
solving the following optimization problem:

x̂p, x̂t = arg min
xp,xt

λ‖D†
pxp‖1 + λ‖D†

txt‖1 + γTV (xp)

+
1

2
‖y − xp − xt‖2

2, (8)

whereD
†
t denotes the Moore-Penrose pseudo inverse ofDt.

Here, we have assumed that the two redundant dictionaries are
of full rank and we can obtain the analysis operator from the
synthesis by using the following relations

αp = D†
pxp

αt = D
†
txt.

One of the major advantages of using (8) is that it requires
searching lower dimensional vectors rather than longer di-
mensional representation coefficient vectors. This increases
numerical efficiency and decreases memory constraints.

A. Iterative Shrinkage Algorithm

Various methods can be used to obtain the solution of (7)
[34] [35]. In this section, we derive a fast convergent iterative
shrinkage algorithm by a method of using Separable Surrogate
Functionals (SSF) to solve the separation problem posed in (7)
[35], [36], [37]. For simplicity, we assume thatD = [Dp,Dt]
and discard theTV component for the discussion given here.
The objective function in (7) can then be re-written as

f(α) = λ‖α‖1 +
1

2
‖y − Dα‖2

2 (9)

whereα contains both the piecewise smooth and texture parts.
Let

d(α, α0) =
c

2
‖α− α0‖2

2 −
1

2
‖Dα− Dα0‖2

2, (10)

whereα0 is an arbitrary vector of lengthN2 and the parameter
c is chosen such thatd is strictly convex. This constraint is
satisfied by choosing

c > ‖DTD‖2 = λmax(D
T D),

whereλmax(D
T D) is the maximal eigenvalue of the matrix

DTD.
Adding (10) to (9) gives the following surrogate function

f̃(α) = λ‖α‖1+
1

2
‖y−Dα‖2

2+
c

2
‖α−α0‖2

2−
1

2
‖Dα−Dα0‖2

2.

(11)
This surrogate functioñf(α) can be re-expressed as

f̃(α) = A+
λ

c
‖α‖1 +

1

2
‖α− x0‖2, (12)

where
x0 =

1

c
DT (y − Dα0) + α0

and A is some constant. Let(a)+ denote the function
max(a, 0) and sign(x) be the signum function defined as

sign(x) =







−1 if x < 0
0 for x = 0
1 for x > 0.
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Given that

Sλ(x) = sign(x)(|x| − λ)+ (13)

is the element-wise soft-thresholding operator with threshold
λ, the global minimizer of the surrogate function is given by

αsol = Sλ/c (x0)

= Sλ/c

(

1

c
DT (y − Dα0) + α0

)

. (14)

It was shown in [36] that the iterations

αk+1 = Sλ/c

(

1

c
DT (y − Dαk) + αk

)

(15)

converge to the minimizer of the functionf in (9) where the
superscriptk indicates that it is the value for thekth iteration.
By breaking the above iteration into the two representation
parts and considering theTV term, we get the following
iterative updates that essentially solves (7)

α̃k+1
p = Sλ/c

(

1

c
DT

p (y − Dpα̂
k
p − Dtα̂

k
t ) + α̂k

p

)

(16)

αk+1
p = DT

p HSγk

(

HTDpα̃
k+1
p

)

(17)

αk+1
t = Sλ/c

(

1

c
DT

t (y − Dpα̂
k
p − Dtα̂

k
t ) + α̂k

t

)

, (18)

whereH is the undecimated Haar wavelet dictionary. A de-
tailed description of the undecimated Haar wavelet transform
can be found in [38]. We have replaced theTV correction
term by a redundant Haar wavelet-based shrinkage estimate as
this seems to give the best results. This adjustment is applied
only to the piecewise smooth component to control the ringing
artifacts near the edges caused by the oscillations of the atoms
in the dictionaryDp. The same adjustment was used in [30]
and the substitution was partially motivated by observing the
connection betweenTV and the Haar wavelet given in [39].

The iterations presented above can be extended to handle
the analysis formulation in equation (8). This is simply done
by modifying iterations (16), (17) and (18) as follows

x̃k+1
p = Dp.Sλ/c

(

1

c
DT

p (y − x̂k
p − x̂k

t ) + D†
px̂

k
p

)

(19)

xk+1
p = HSγk

(

HT x̃k+1
p

)

(20)

xk+1
t = Dt.Sλ/c

(

1

c
DT

t (y − x̂k
p − x̂k

t ) + D
†
t x̂

k
t

)

. (21)

We summarize the algorithm for recovering the two separated
components of a SAR image in Fig. 2. In step 3 of the algo-
rithm in Fig. 2,‖.‖∞ denotes theℓ∞-norm. For anN dimen-
sional vectorx, it is defined as‖x‖∞ = max(|x1|, · · · , |xN |).

Once the two denoised components ofx are estimated, we
obtain the final estimate ofx as

x̂ = exp(x̂p + x̂t). (22)

Since, the logarithmic transformation introduces a bias on
the final estimate, we correct it along with the exponential
transformation [12], [25].

Input: y, c.
Initialization: Initialize k = 1 and set
x0

p = 0, x0
t = 0, r0 = y − x0

p − x0
t , and λ0 =

1

2

(

‖DT
p y‖∞ + ‖DT

t y‖∞
)

.
repeat:
1. Update the estimate ofxp andxt as

x̃k
p = Dp.Sλk

(

1

c
DT

p (rk−1) + D†
px̂

k−1
p

)

xk
p = HSγk

(

HT x̃k
p

)

xk
t = Dt.Sλk

(

1

c
DT

t (rk−1) + D
†
t x̂

k−1
t

)

.

2. Update the residual as

rk = y − xk
p − xk

t .

3. Update the shrinkage parameter as

λk =
1

2

(

‖DT
p rk‖∞ + ‖DT

t rk‖∞
)

.

until: stopping criterion is satisfied.
Output: The two componentŝxp = xk

p and x̂t = xk
t .

Fig. 2. The SSF iterative shrinkage algorithm to solve (8).

IV. EXPERIMENTAL RESULTS

In this section, we present the results of our proposed
despeckling algorithm and compare them with the enhanced
Lee filter [2] and some recent state-of-the-art methods [25],
[21], [22], [30]. We also compare our results with a Stein-
Block thresholding (SBT) method proposed in [40]. This
method was shown to be nearly minimax over a large class
of images in the presence of additive bounded noise. This
method requires a threshold parameter which we set to the
theoretical value 4.505 as derived in [40]. Furthermore, we
compare the performance of our combined dictionary-based
approach to despecking with that of a fixed transform-based
despecking method. In particular, we apply soft-thresholding
on the subband coefficients of the wavelet transform. We call
the resulting method wavelet-based thresholding (WT). Forthe
MCA method [30], we use the curvelet transform to represent
the piecewise smooth component and 2D-DCT to representant
the texture component.

In Fig. 3, we display the test images used for different
experiments in this paper. In these experiments, we use the
relative error (RE) and the equivalent number of looks (ENL)
to measure the performance of the routines tested:

RE =
‖x̂ − x‖2

‖x‖2

,

ENL =
mean2

variance
,

where the mean and the variance are measured within a
homogeneous region (see [21] and [2]). A large ENL value
corresponds to better speckle reduction.
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(a) (b)

(c)

Fig. 3. Images used in this paper for different experiments.(a) 256 × 256

Cameramanimage, (b)512×512 Fields image, (c)512×512 Nimesimage.

A. Dictionaries

In our experiments, we use a dictionary corresponding to
the shearlet transform to represent the piecewise smooth com-
ponent. Shearlets extend the traditional wavelets by allowing
for waveforms to be defined not only at various scales and
locations but also at various orientations [41]. The shearlet
transform is best suited for representing images with edgesand
anisotropic structures. Moreover, numerical results giveevi-
dence to the superior behavior of shearlet-based decomposition
algorithms when compared to curvelet-based and contourlet-
based algorithms [41], [42]. This is the reason why we choose
shearlets instead of curvelets and contourlets in our approach.
A brief discussion about the shearlet transform is given in the
appendix. Fig. 4, shows some atoms from a shearlet dictionary.
In our implementation, we used the nonsubsampled shearlet
transform with the decomposition structure[3, 3, 4, 4] which
determines the number of directions in the scales from coarse
to fine. As a result, the size ofDp is N2 × 56N2.

The discrete cosine transform is known to closely approx-
imate the Karhunen–Loève transform for a class of random
signals known as first-order Markov processes that model
several real-world images. Explicitly the coefficients of the
DCT for anN ×N imagex = (xm,n) are

Xj,k =
2

N

N−1
∑

m=0

N−1
∑

n=0

xm,n cos(π(m− 1/2)(j − 1/2)/N)

× cos(π(n− 1/2)(k − 1/2)/N).

It is clear the oscillatory nature of the basis functions can
represent repetitious elements common to texture components
which is why they are commonly use for this purpose. A few
atoms from the 2D-DCT dictionary are shown in Fig. 5. The
number of atoms in the dictionaryDt are64 ×N2.

Fig. 4. A few atoms from a shearlet dictionary. Each block represents
the result of the applying the shearlet transform for a particular scale and
orientation after applying it to a centered impulse response.

Fig. 5. A few atoms from the 2D-DCT dictionary. Each block represents the
result of applying the inverse 2D-DCT transform to impulse responses which
are centered at various locations.

B. Parameters

From the discussion in section III, the parameterc should
be chosen such thatc > λmax(DpD

T
p + DtD

T
t ). This can be

satisfied by choosingc > 2. In particular, the value we choose
wasc = 3.

The Haar shrinkage valueγk in step 1 of the algorithm
is 3σk

xp
, where σk

xp
is the standard deviation of the noise

estimated by using a median estimator on the finest scale of
the Haar wavelet coefficients of̃xk

p [19].

C. Stopping rule

We change the threshold value ofλk during each iteration
according to

λk =
1

2

(

‖DT
p rk‖∞ + ‖DT

t rk‖∞
)

and stop the iterations whenλk ≤ Tσ, whereT ≈ 2.1 [43].
This way we stop the iterations when the residual is at the
noise level and the noise is rejected in each component. Note
that this step of the algorithm assumes the noise variance to
be known. This is not a problem since the noise variance can
easily be estimated by using a median estimator on the finest
scale of the wavelet coefficients ofy [19].
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D. Results on simulated data

In Table I, we report the results of experiments on the
simulated data with various number of looks. We did not
have access to the codes of [25], [21] and [22]. Hence, we
report the relative error values reported in the corresponding
papers. Figures 6 and 7 show the noisy and restored images
for some of the experiments with the simulated data. It can
be seen from these figures and the results in Table I that
our method performs favorably over some of the competitive
methods for speckle reduction. In particular, this is the case
when the number of looks is greater than three. Furthermore,
these results clearly indicate that an improvement is achieved
when a combined dictionary approach is used to restore a SAR
image as can be seen by comparing the results of our method
with that of SBT, MCA and WT in Table I.

(a) (b)

(c) (d)

Fig. 6. (a) Noisy image,L = 4, RE = 0.498. (b) Restored image using our
method,RE = 0.118. (c) Noisy image,L = 4, RE = 0.500. (d) Restored
image using our method,RE = 0.065.

Using theCameramanimage, in Figure 8 and Figure 9,
we show the evolution of the objective function and relative
error, respectively, as we vary the number of looks. Note that
in Figure 9, the relative error decreases significantly after five
iterations and saturates around the tenth iteration, showing that
the proposed method is efficient and requires less number of
iterations compared to [21].

E. Results on real SAR data

In the second set of experiments, we use the real SAR
images shown in Figure 10(a) and Figure 10(b). These images
were collected using the Sandia National Laboratories Twin
Otter SAR sensor payload operating atX band. Since the true
reflectivity fields are not available, we use ENL to measure the

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Experiment with theNimesimage. (a) Noisy image,L = 10, RE =

0.315. (b) Restored image using our method,RE = 0.163. (c) Noisy image,
L = 4, RE = 0.501. (d) Restored image using our method,RE = 0.207.
(e) Noisy image,L = 1, RE = 1.001. (f) Restored image using our method,
RE = 0.290.

performance of our method. The value of ENL is estimated
from the two32×32 homogeneous regions (shown with white
boxes). We refer to the region left side of the image as R1 and
the right side of the image as R2. The estimated ENL values
are reported in Table II. As can be seen from this table, our
method outperforms the WT, MCA and SBT methods.

The despeckling results from various methods are shown
in Figures 11(b)-(d) and Figures 12(b)-(d). The ratios of the
original image to the filtered images, referred to as the noise
images, are shown in Fig. 11(e)-(h) and Figures 12(e)-(h).
It is evident from these figures the single dictionary-based
reconstructions such as SBT and WT suffer from noticeable
artifacts. The MCA method based on curvelets and 2D-
DCT provides good reconstruction, however, it removes a lot
of point targets. Our combined dictionary approach clearly
provides good reconstructions and removes most, if not all,of
these artifacts and preserves point targets. Note that we have



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X,NO. X, MONTH 20XX 7

TABLE I
RELATIVE ERRORS FOR VARIOUS EXPERIMENTS.

Image L Noisy Ours SBT [40] MIDAL [21] [25] [22] WT Lee MCA

Cameraman 13 0.277 0.083 0.104 0.090 - 0.098 0.098 0.170 0.090
Cameraman 10 0.315 0.090 0.111 0.097 0.091 - 0.105 0.171 0.101
Cameraman 4 0.498 0.118 0.144 0.124 0.131 - 0.135 0.178 0.140
Cameraman 3 0.573 0.129 0.156 0.130 - 0.151 0.147 0.182 0.151
Cameraman 1 0.990 0.184 0.220 0.167 0.192 - 0.228 0.211 0.210

Fields 10 0.316 0.054 0.058 0.056 0.055 - 0.063 0.063 0.052
Fields 4 0.500 0.065 0.073 0.066 0.066 - 0.077 0.804 0.071
Fields 1 1.000 0.099 0.114 0.089 0.096 - 0.159 0.135 0.110
Nimes 10 0.315 0.163 0.312 0.170 0.174 - 0.195 0.273 0.186
Nimes 4 0.501 0.207 0.223 0.217 0.217 - 0.247 0.277 0.221
Nimes 1 1.001 0.290 0.312 0.301 0.314 - 0.346 0.298 0.320
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Fig. 8. The objective function value as a function of iteration number for
the experiments with a Cameraman image with various number of looks.
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Fig. 9. Relative error vs. number of iterations curves for the experiments
with a Cameraman image with various number of looks..

Fig. 10. Real SAR images used for the experiments.

not compared our method on the real SAR images with the
other methods since their implementations were not available
to us.

F. Computational efficiency

In our image separation-based despeckling method, the most
computationally intensive part is in finding the coefficients
from a shearlet dictionary. Using MatLab on a Windows
system with Intel Core 2 CPU 2.16 GHz/3.00 GB processor,
one iteration of the entire algorithm takes around 4.15 seconds.
On average our method takes about 45 seconds to process an
image of size256 × 256. The performance of our algorithm
can be enhanced by using a more efficient shearlet transform
implementation which is parallelizable. Each iteration ofour
algorithm has the complexity ofO(N2 log2(N)).

G. Discussion

Note that we have applied our component separation method
on the log-transformed images. However, one can directly
apply this method on the SAR image without applying the log
transformation to separate the piecewise smooth component
and the texture component. For instance, SAR model (1) can
be re-written as

y = xf

= x + (f − 1)x, (23)

where 1 = [1, · · · , 1]T . In this setting, the first and the
second term in (23) can be viewed asxp andxt, respectively.
In particular, if one has designed dictionaries specifically to
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11. Despeckled images. Restored using (a) the SBT method, (b) the MCA method, (c) wavelet-based thresholding and (d) our method. (e)-(h) are the
noise images corresponding to the filtered images in (a)-(d), respectively.

 

 

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12. Despeckled images. Restored using (a) the SBT method, (b) the MCA method, (c) wavelet-based thresholding and (d) our method. (e)-(h) are the
noise images corresponding to the filtered images in (a)-(d), respectively.
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TABLE II
THE ESTIMATED ENL VALUES.

Image Region Original WT SBT Ours Lee MCA

Fig. 11(a) R1 3.291 30.366 49.028 79.357 5.518 50.23
Fig. 11(a) R2 3.236 30.428 84.936 133.962 8.263 90.89
Fig. 12(b) R1 4.117 44.717 75.041 146.379 11.35 85.75
Fig. 12(b) R2 3.997 37.253 74.641 101.491 11.30 86.70

compress these terms then, one can view the first term as the
restored image. However, designing dictionaries to compress
the individual terms in (23) is nontrivial. One can adapt
dictionary learning methods [44] to learn these components.
This in turn would require a collection of training images
containing only the piecewise smooth reflectivity fields and
images containing only signal-dependent noise. This formu-
lation is also relevant in the case when the SAR images
contain a strong additive noise component where the purely
multiplicative model may not be adequate.

V. CONCLUSION

We have proposed a new method of speckle reduction
in SAR imagery based on separating an image into various
components. Unique to this approach is the ability to use
specific dictionaries of representations suited for separation
with an iterative scheme that is able to retain important fea-
tures. The experiments show this method performs favorably
compared to other competitive methods. This new process is
also valuable for many SAR image understanding tasks such as
road detection, railway detection, ship wake detection, texture
segmentation for agricultural scenes and coastline detection.
In addition, specific dictionaries could be designed to be used
with this procedure to capture unique signatures while dealing
with the speckle removal.

APPENDIX

The Shearlet Transform:
The shearlet construction can be considered as a natural

extension of wavelets into two-dimensions [45]. Its representa-
tive elements are defined by the two-dimensional affine system

{ψ̃ast(x) = | detMas|−
1

2 ψ̃(M−1
as x− t) : t ∈ R

2},
where

Mas =

(

1 s
0 1

) (

a 0
0

√
a

)

is a product of a shearing and anisotropic dilation matrix for
(a, s) ∈ R

+ × R. The generating functioñψ is such that

Ψ̃(ξ) = Ψ̃(ξ1, ξ2) = Ψ̃1(ξ1) Ψ̃2

(

ξ2
ξ1

)

,

where ψ̃1 is a continuous wavelet for which̃Ψ1 ∈ C∞(R)
with supp Ψ̃1 ⊂ [−2, 1/2]∪ [1/2, 2], andψ̃2 is chosen so that
Ψ̃2 ∈ C∞(R), supp Ψ̃2 ⊂ [−1, 1], with Ψ̃2 > 0 on (-1,1), and
‖ψ̃2‖2 = 1. Under these assumptions, a functionf ∈ L2(R2)
can be represented as

f(x) =

∫

R2

∫ ∞

−∞

∫ ∞

0

〈f, ψ̃ast〉 ψ̃ast(x)
da

a3
ds dt,

for a ∈ R
+, s ∈ R, andt ∈ R

2. The operatorSH defined by

SHf(a, s, t) = 〈f, ψ̃ast〉
is referred to as thecontinuous shearlet transformof f ∈
L2(R). It is dependent on the scale variablea, the shears,
and the locationt.

The collection ofdiscrete shearletsis given by

{ψ̃j,ℓ,k = | detA|j/2 ψ̃(BℓAjx− k) : j, ℓ ∈ Z, k ∈ Z
2},

where

B =

(

1 1
0 1

)

, A =

(

2 0

0
√

2

)

.

Shearlets form a Parseval frame (tight frame with bounds equal
to 1) forL2(R2) given the appropriate choice of the generating
function ψ̃ (see [41] for details). An M-channel filterbank
implementation can be done by using the techniques given in
[46]. As a consequence, its implementation has a complexity
of O(N2 log2(N)) for anN ×N image.
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